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Abstract We apply our recently proposed proper quantization rule,
∫ xB

xA
k(x)dx −

∫ x0B
x0A

k0(x)dx = nπ , where k(x) = √
2M[E − V (x)]/h̄ to obtain the energy spec-

trum of the modified Rosen-Morse potential. The beauty and symmetry of this proper
rule come from its meaning—whenever the number of the nodes of φ(x) or the num-
ber of the nodes of the wave function ψ(x) increases by one, the momentum integral∫ xB

xA
k(x)dx will increase by π . Based on this new approach, we present a vibrational

high temperature partition function in order to study thermodynamic functions such
as the vibrational mean energy U , specific heat C , free energy F and entropy S. It is
surprising to note that the specific heat C(k = 1) first increases with β and arrives to
the maximum value and then decreases with it. However, it is shown that the entropy
S(k = 1) first increases with the deepness of potential well λ and then decreases
with it.

Keywords Proper quantization rules · Energy spectrum · Modified
Rosen-Morse potential · Partition function

1 Introduction

The exact solutions of quantum systems have been an important research subject and
attracted much attention in the development of quantum mechanics since they con-
tain all necessary information of studied quantum systems. To our knowledge, there
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are several main approaches to treat solvable quantum potentials, e.g. the SUSYQM
approach [1], the SWKB method [2], the Nikiforov-Uvarov method [3], the factoriza-
tion formalism [4,5] and exact quantization rule method [6–8]. The latter is the gener-
alization of the Bohr-Sommerfeld quantization rule [9] and the WKB [10–12]. Except
for these approaches, the quasilinearization method (QLM) has played an important
role in dealing with arbitrary physical potentials numerically [13–20]. Recently, Yin
et al. have shown why the SWKB is exact for all shape invariant potentials [21].

The exact quantization rule method is a powerful tool in finding the eigenvalues of
all solvable quantum potentials [22–27]. Nevertheless, it involves complicated integral
calculations, particularly the calculation of the quantum correction term. To overcome
this problem, we have proposed a proper quantization rule [28] and shown its great
simplicity and symmetry in comparison with the previous exact quantization rule [29–
32]. The purpose of this work is to apply proper quantization rule to obtain the energy
levels of modified Rosen-Morse potential and then to study its thermodynamic prop-
erties including vibrational mean energy U , specific heat C , free energy F and entropy
S as illustrated in Ref. [33]. Such a study was not considered before to our knowledge.

This work is organized as follows. In Sect. 2 we briefly review the proper quan-
tization rule. We apply this method to obtain the energy spectrum of this system in
Sect. 3. In Sect. 4 we derive all thermodynamic functions and study their properties.
Some concluding remarks are given in Sect. 5.

2 Proper quantization rule

As we know, the one-dimensional Schrödinger equation

d2

dx2ψ(x) = −2M

h̄2 [E − V (x)]ψ(x) (1)

can be written as a non-linear Riccati equation

d

dx
φ(x) = −2M

h̄2 [E − V (x)] − φ(x)2, (2)

where φ(x) = ψ(x)−1dψ(x)/dx is the logarithmic derivative1 of wave function
ψ(x). For the Schrödinger equation, the phase angle is nothing but the logarithmic
derivative φ(x). It is shown from Eq. (2) that φ(x) decreases monotonically with
respect to x between two turning points, where E ≥ V (x). Specifically, as x increases
across a node of wave function ψ(x), φ(x) decreases to −∞, jumps to +∞, and then
decreases again. By carefully studying one-dimensional Schrödinger equation, Ma
and Xu proposed an exact quantization rule [6,7]

xB∫

xA

k(x)dx = Nπ +
xB∫

xA

k′(x) φ(x)
φ′(x)

dx, (3)

1 As said by Yang in a talk on monopole: “For the Sturm-Liouville problem, the fundamental trick is the
definition of a phase angle which is monotonic with respect to the energy. ” [34].
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where k(x) = √
2M[E − V (x)]/h̄, xA and xB two turning points determined by

E = V (x). The N = n + 1 is the number of zeros of φ(x) in the region E ≥ V (x),
and is larger by one than the number n of nodes of wave function ψ(x). From now on,
we denote the prime, such as k′(x) and φ′(x) in above equation, as the first derivative
with respect to the argument. The first term Nπ is the contribution from the zeros of
φ(x), and the second is called the quantum correction term. Ma and Xu find that this
quantum correction is independent of the number of nodes of wave function. Conse-
quently, it is enough to consider the ground state in calculating quantum correction
Q0 = ∫ xB

xA
k′

0(x)φ0(x)/φ′
0(x)dx .

This methodology can be easily extended to arbitrary dimensional space [27]. It
should be pointed out that two integrals in Eq. (3), particularly the calculation of
quantum correction term are very difficult and tedious for some physical potentials.
To overcome this, we have proposed proper quantization rule [28] as follows:

xB∫

xA

k(x)dx −
x0B∫

x0A

k0(x)dx = (N − 1)π = nπ, (4)

and

rB∫

rA

k(r)dr −
r0B∫

r0A

k0(r)dr = nπ. (5)

Thus, two integrals involved in the proper quantization rule have same mathematical
form. Accordingly, when applying it to calculate the energy levels we only calculate
its first integral with respect to k(x), and then replace energy levels En by E0 to obtain
the second integral. This will greatly simplify the complicated integral calculations
occurred previously [6–8,22–27].

3 Modified Rosen-Morse potential

The modified Rosen-Morse potential is given by [35]

V (x) = −U0 − U1sinh(x/a)

cosh2(x/a)
. (6)

Since V (x) → 0 as x → ±∞, the energy En of the quantum system, if exists, has to
be negative.

Let

y = sinh(x/a), y ∈ (−∞,∞),

dy

dx
=
√

1 + y2

a
, V (x) = −U0 − U1 y

1 + y2 .
(7)
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The non-linear Riccati equation for the ground state is written in a new variable y
as

√
1 + y2

a

dφ0(x)

dy
= −2M

h̄2

[

E0 + U0 − U1 y

1 + y2

]

− φ2
0(x). (8)

Since the logarithmic derivative φ0(x) for the ground state has one zero and no pole,
it has to take the linear form in y. In addition, in order to meet the term with

√
1 + y2

in the Riccati equation (8), φ0(x) can contain an additional factor (1+ y2)−1/2, which
has no zero in the domain of definition of new variable y

φ0(y) = − Ay + B

a
√

1 + y2
, A > 0. (9)

Substituting Eq. (9) into Eq. (8), one has

− A − By

a2(1 + y2)
= −2M

[
E0(1 + y2)+ U0 − U1 y

]

h̄2(1 + y2)
− A2 y2 + 2ABy + B2

a2(1 + y2)
, (10)

from which we find that the ground state energy by solving the non-linear Riccati
equation (2) is given by

E0 = − h̄2(G0 − 1)2

8Ma2 , (11)

where

G2
0 = 1

2
+ 4Ma2U0

h̄2 +
{(

1

2
+ 4Ma2U0

h̄2

)2

+
(

4Ma2U1

h̄2

)2 }1/2

, (12)

and two turning points as well as their properties are given by

yA = sinh(xA/a) =
−U1 −

√
U 2

1 − 4En(U0 + En)

2En
,

yB = sinh(xB/a) =
−U1 +

√
U 2

1 − 4En(U0 + En)

2En
,

yA + yB = U1/En, yA yB = 1 + U0/En .

(13)

The momentum k(x) is written as

k(x) =
√−2M En

h̄
√

1 + y2

√
(yB − y)(y − yA). (14)
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Now, let us calculate the first integral in Eq. (4)

xB∫

xA

k(x)dx =
xB∫

xA

1

h̄

√
2M(E − V (x)dx

= a
√−2M En

h̄

yB∫

yA

√
(yB − y)(y − yA)

1 + y2 dy (15)

= π
a
√−2M En

h̄

[
1

2

(√
1 + y2

A

√
1 + y2

B − yA yB + 1

)1/2

− 1

]

= −π a
√−2M En

h̄
+ aπ

√
M

h̄

√

U0 +
√

U 2
0 + U 2

1 .

In the above calculation, the following integral formula was used,

b∫

a

√
(b − y)(y − a)

1 + y2 dy = π

2

{√
1 + a2

√
1 + b2 − ab + 1

}1/2 − π. (16)

By replacing En in Eq. (15) by E0 given in Eq. (11), we obtain

x0B∫

x0A

k0(x)dx = π

2

[

1 − G0 + 2a
√

M

h̄

√

U0 +
√

U 2
0 + U 2

1

]

. (17)

Substituting Eqs. (15) and (17) into Eq. (4) leads to

− π

(
a
√−2En M

h̄
− G0 − 1

2

)

= nπ, (18)

from which we get the eigenvalues

En = − h̄2(G0 − 2n − 1)2

8Ma2 , n = 0, 1, 2, . . . , < [(G0 − 1)/2], (19)

where [ f ] means the largest integer inferior to f .

4 Thermodynamic properties

We now study the thermodynamic properties of this system. For this purpose, it is
necessary to obtain the vibrational partition function calculated by

Z =
λ∑

n=0

e−βEn , β = 1

kT
, λ = G0 − 1

2
, (20)
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Fig. 1 Vibrational partition function Z as function of α for different β

where k is the Boltzmann factor. Substituting Eq. (19) into Eq. (20) enables us to
obtain the following expression

Z =
λ∑

n=0

e
(λ−n)2

α2 , α =
√

2M

β

a

h̄
= τ/

√
β, τ = a

√
2M/h̄. (21)

At high temperature T , for large λ and small β, it can be replaced by the following
integral

Z = α

λ/α∫

0

ey2
dy, (22)

where y = (λ− n)/α. Its exact solution is nothing but the error function [36]

Z =
√
π

2
α Erfi

(
λ

α

)

=
√
π

2

τ√
β

Erfi

(
λ
√
β

τ

)

,

(23)

which can be used to derive all related thermodynamic functions. For given β and unit
τ , the dependences of Z on λ and β are shown in Figs.1 and 2, respectively. It is found
that the Z monotonically increases as λ and β increase.

The vibrational mean energy U can be obtained as

U = − ∂

∂β
ln Z

= 1

2β
− λ e

λ2β
τ2

τ
√
πβ Erfi

(
λ
√
β
τ

) , (24)
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Fig. 2 Vibrational partition function Z as function of β for different λ

0 5 10 15 20

250

200

150

100

50

0

0.010

0.008

0.005

Fig. 3 Vibrational mean energy U as function of λ for different β

which implies that U = −λ2/(3τ 2) for β � 1. It is shown in Figs. 3 and 4 that the U
monotonically decreases with the increasing parameters λ and β.

The vibrational specific heat C is obtained as

C = ∂

∂T
U = − kβ2 ∂

∂β
U

= 1

2
k

⎧
⎪⎪⎨

⎪⎪⎩
1 −

e
λ2β
τ2 λ

√
β

[

2e
λ2β
τ2 λ

√
βτ + √

π
(
τ 2 − 2λ2β

)
Erfi

(
λ
√
β
τ

)]

πτ 3Erfi
(
λ
√
β
τ

)2

⎫
⎪⎪⎬

⎪⎪⎭
,

(25)

which implies that C = 0 for β � 1. It is shown in Fig. 5 that the specific heat C
(k = 1) increases with the increasing λ. However, the specific heat C first increases
with β to the maximum value and then decreases with it as shown in Fig. 6.
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Fig. 4 Vibrational mean energy U as function of β for different λ
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Fig. 5 Vibrational free energy C as function of λ for different β

Let us consider the vibrational free energy F . It can be calculated as

F = − 1

β
ln Z

= − 1

β
ln

⎛

⎝

√
πτErfi

(
λ
√
β
τ

)

2
√
β

⎞

⎠ .
(26)

As shown in Fig. 7, the F decreases monotonically with the increasing parameter
λ, while it increases with the parameter β as shown in Fig. 8.
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Fig. 6 Vibrational free energy C as function of β for different λ
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Fig. 7 Vibrational free energy F as function of λ for different β

Finally, we study the vibrational entropy S. It can be obtained by

S = k ln Z + kT

(
∂ ln Z

∂T

)

= k ln Z − kβ

(
∂ ln Z

∂β

)

= 1

2
k

⎧
⎨

⎩
− 2e

λ2β
τ2

√
βλ

√
πτErfi

(
λ
√
β
τ

) + 2 log

⎛

⎝
τErfi

(
λ
√
β
τ

)

√
β

⎞

⎠+ log
(π

4

)
+ 1

⎫
⎬

⎭
.

(27)

It is shown in Fig. 9 that the entropy S (k = 1) first increases with the λ and then
decreases with it. On the other hand, the S decreases with the parameter β as shown
in Fig. 10.
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Fig. 8 Vibrational free energy F as function of β for different λ
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Fig. 9 Vibrational free energy S as function of λ for different β

5 Concluding remarks

We have applied the recently proposed proper quantization rule,
∫ xB

xA
k(x)dx −

∫ x0B
x0A

k0(x)dx = nπ , where k(x) = √
2M[E − V (x)]/h̄ to obtain the energy spectra

of the modified Rosen-Morse potential. Its symmetry and simplicity come from its
meaning—whenever the number of the nodes of φ(x) or the number of the nodes of
the wave function ψ(x) increases by one, the momentum integral

∫ xB
xA

k(x)dx will
increase by π . The vibrational partition function Z is exactly calculated and used
to study thermodynamic functions such as the vibrational mean energy U , specific
heat C , free energy F and entropy S. It is found that the specific heat C(k = 1)
first increases with β and arrives to the maximum value and then decreases with it.
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Fig. 10 Vibrational free energy S as function of β for different λ

However, the entropy S(k = 1) first increases with the deepness of potential well λ
and then decreases with it.
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